

NPS-CS-09-004

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

Approved for public release; distribution is unlimited

DNS and Multilevel Secure Networks:
Architectures and Recommendations

by

Paul C. Clark
Timothy E. Levin
Cynthia E. Irvine
David J. Shifflett

February 2009

This page intentionally left blank

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Vice Admiral Daniel T. Oliver (Retired) Leonard Ferrari
President Executive Vice President and
 Provost

This material is based upon work supported by the National Reconnaissance Office (NRO)
and the Office of Naval Research (ONR). Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of that agency.

Reproduction of all or part of this report is authorized.

This report was prepared by:

________________________ _______________________
Paul C. Clark Cynthia E. Irvine
Research Associate Professor

________________________ _______________________
Timothy E. Levin David J. Shifflett
Research Associate Professor Research Associate

Reviewed by: Released by:

______________________________ _________________
Peter J. Denning, Chair Karl Van Bibber
Department of Computer Science Vice President and
 Dean of Research

This page intentionally left blank

NSN 7540-01-280-5800 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std 239-18

REPORT DOCUMENTATION PAGE

Form approved

OMB No 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
 February 12, 2009

3. REPORT TYPE AND DATES COVERED
 Research; February 2006 - February 2009

4. TITLE AND SUBTITLE

DNS and Multilevel Secure Networks: Architectures and Recommendations

5. FUNDING
 J448114

6. AUTHOR(S)

Paul Clark, Timothy E. Levin, Cynthia E. Irvine, and David J. Shifflett

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Center for Information Systems Security Studies and Research (CISR)
1411 Cunningham Road, Monterey, CA 93943

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 NPS-CS-09-004

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Reconnaissance Office (NRO) and the Office of Naval Research (ONR)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

Not applicable

11. SUPPLEMENTARY NOTES
This material is based upon work supported in part by the National Reconnaissance Office (NRO) and the Office of Naval Research (ONR). Any
opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the
sponsors.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words.)

The Domain Name System (DNS) protocol was introduced to solve a naming problem in TCP/IP networking, namely, to provide a translation service
of system names to network addresses (i.e., Internet Protocol (IP) addresses). The protocol was not developed with a requirement to support
multilevel secure (MLS) networks. However, the Department of Defense (DoD) vision for the Global Information Grid (GIG) entails support for
multilevel networks. In the future, DNS installations must securely deal with multilevel issues. This paper describes specific design
recommendations for providing MLS DNS in the context of the GIG Vision, and the Monterey Security Architecture (MYSEA) Testbed. It also
describes several other potential MLS DNS architectures along with their advantages and disadvantages.

14. SUBJECT TERMS

Multilevel Secure, Domain Name System

15. NUMBER OF
 PAGES
 46

 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT
 Unclassified

18. SECURITY CLASSIFICATION
 OF THIS PAGE
 Unclassified

19. SECURITY CLASSIFICATION
 OF ABSTRACT
 Unclassified

20. LIMITATION
OF ABSTRACT
 Unclassified

This page left intentionally blank

| Technical Report NPS-CS-09-004

DNS and Multilevel Secure Networks
Architectures and Recommendations

Paul C. Clark, Timothy E. Levin, Cynthia E. Irvine, David J. Shifflett

February 12, 2009

| Technical Report NPS-CS-09-004

ACKNOWLEDGEMENTS

This material is based upon work supported in part by the National Reconnaissance
Office (NRO) and the Office of Naval Research (ONR). Any opinions, findings,
conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect those of the sponsors.

Author Affiliation:

Center for Information Systems Security Studies and Research
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

| Technical Report NPS-CS-09-004

 i

Table of Contents

1  Introduction .. 1 

1.1  Name and Address Translation... 1 
1.2  Distributed DNS Databases .. 2 
1.3  Iterative and Recursive DNS Requests ... 2 
1.4  DNS Implementations... 3 
1.5  Mandatory Access Control (MAC)... 3 
1.6  Session Level .. 5 
1.7  Confidentiality Levels versus Confidentiality Categories 5 
1.8  DoD System-High Networks, Domain Names and IP Addresses 6 
1.9  MYSEA Testbed... 6 
1.10  Global Information Grid ... 7 
1.11  Covert Channels.. 7 
1.12  Trusted Computing Base... 7 
1.13  Trusted Subjects.. 8 

2  The Problem ... 8 
2.1  Research Scope and Focus.. 8 
2.2  Policy Assumptions .. 8 
2.3  MLS DNS Requirements .. 9 
2.4  Some Implementation Considerations .. 9 

3  Recommendations .. 11 
3.1  MYSEA Testbed... 11 
3.2  DoD GIG Vision ... 13 

4  Previous Work.. 15 
4.1  Multilevel Relational Databases ... 15 
4.2  Multilevel DoD Directory Services .. 16 

5  Future Work ... 17

References... 19

Appendix A: Other Possible MLS DNS Architectures... 21 

Approach 1: One COTS DNS Daemon Using DNS Views 21 
Approach 2: One COTS DNS Daemon, Multiple Single-Level DNS Data Files ... 24 
Approach 3: One DNS Daemon, One DNS Database ... 26 
Approach 4: Many DNS Daemons on Many Physical Servers 28 
Approach 5: Treat all IP Addresses as Unclassified Data 29 
Approach 6: Development of a High Assurance DNS Daemon.............................. 30 
Approach Comparison ... 32 

Initial Distribution List ... 35 

| Technical Report NPS-CS-09-004

ii

List of Figures

Figure 1.  DNS in an MLS Context..10 
Figure 2.  Recommended Approach for MYSEA Testbed ..12 
Figure 3.  Recommended Approach for DoD GIG Vision ..14 
Figure 4.  Approach 1: One COTS DNS Daemon Using DNS Views ..22 
Figure 5.  Approach 2: One COTS DNS Daemon, Multiple Single-Level DNS Data Files25 
Figure 6.  Approach 3: One DNS Daemon, One DNS Database ...27 
Figure 7.  Approach 4: Many DNS Daemons on Many Physical Servers28 

List of Tables

Table 1.  Approach Disadvantages...32 
Table 2.  Approaches mapped to Requirements...33 

| Technical Report NPS-CS-09-004

 1

Abstract

The Domain Name System (DNS) protocol was introduced to solve a naming problem in
TCP/IP networking, namely, to provide a translation service of system names to network
addresses (i.e., Internet Protocol (IP) addresses). The protocol was not developed with a
requirement to support multilevel secure (MLS) networks. However, the Department of
Defense (DoD) vision for the Global Information Grid (GIG) entails support for
multilevel networks. In the future, DNS installations must securely deal with multilevel
issues. This paper describes specific design recommendations for providing MLS DNS in
the context of the GIG Vision, and the Monterey Security Architecture (MYSEA) Testbed.
It also describes several other potential MLS DNS architectures along with their
advantages and disadvantages.

1 Introduction
The purpose of this section is to provide the reader with enough background information
to understand the terminology used and the principles discussed in the remainder of the
report. Topics covered are those relevant to naming schemes for the Internet and security
concepts relevant to the subsequent analysis and recommendations.

1.1 Name and Address Translation
All computers that participate in a TCP/IP network, such as the Internet, must be assigned
an IP network address, which is minimally a 32-bit number [1]. All traffic on the
network layer is sent and routed based on IP addresses. A given network node observes
all packets that traverse its network connection and processes only the ones whose
destination address match its own address. Network nodes that provide a service usually
have names associated with them too, because people can remember names more easily
than long numbers. For a client computer to request a service on behalf of the user, it
must be able to translate the named source provided by the user to the numbered IP
address of the server. The Domain Name System (DNS) protocol was developed to
transparently provide this translation. When a user on a client references another system
by name, the client queries the configured DNS server for the IP address of the given
name. Upon receipt of the corresponding IP address, the client can then send a
transmission to the requested destination.

A computer implementing the DNS protocol provides a name-to-address mapping service
(and vice versa), and is referred to as a DNS server. A DNS server maintains a database
of names and matching IP addresses. When a client computer is configured for a
network, the IP address of a local DNS server must be provided if the client is ever
expected to dynamically map names to IP addresses.

The high-level concept of the DNS protocol is fairly straightforward, but the details,
configuration and other added functionality make it much more complex. For example,
there is no single DNS server where all the names and addresses of all the computers on
the Internet are maintained. The DNS protocol specifies a distributed database made up
of many DNS servers.

| Technical Report NPS-CS-09-004

2

1.2 Distributed DNS Databases
Each computer name on the Internet is part of what is called the “domain name space”.
Distribution of the DNS database occurs by breaking up the domain name space into
smaller domains, which in turn can be broken up further into other sub-domains. The
top-level domains are familiar: .com, .edu, .net, and so forth. When the XYZ University
connects to the Internet, its DNS domain might be xyz.edu. If the university staff would
like to manage their own DNS server, the authority to do so is delegated to them by the
.edu authority, and an entry in the top-level .edu domain would be made, mapping the
xyz.edu name to the XYZ DNS server IP address. The university may manage all
mappings on their campus computers, or they could in turn delegate to another level, such
as to the Computer Science (CS) department, creating a third-level domain, cs.xyz.edu.
The xyz.edu DNS server would no longer contain mappings for the CS computers;
instead it would contain an entry that maps the CS DNS server name to that server’s IP
address.

When a client in the XYZ CS department needs to translate a name to another computer
in the CS department, it queries its local CS DNS server, which returns the translation. If
a CS client needs to translate a name to a computer in the Physics department, it contacts
the CS DNS server, and then the CS DNS server queries its parent DNS servers. Then, if
the Physics department also had its own DNS server, the CS DNS Server would then
query the Physics DNS server, which would then return the translation. In other words,
given the fully qualified name of a computer (i.e., its full name with respect to the
domain name space, such as client1.physics.xyz.edu), there is enough information to
walk up and down the distributed DNS tree to find the server from which the answer to
the query can be obtained.

When it is necessary to update DNS data for a domain (e.g., when a host is added or
removed), the change is made in the appropriate authoritative DNS server by the
delegated organization such that queries for the IP address can be properly serviced. This
new information may also be replicated automatically to slave DNS servers to provide
redundancy and performance benefits.

DNS servers also support the determination of the IP address of a domain’s e-mail server.
If an e-mail is addressed to someone@acme.com, it is unlikely that Acme’s mail server is
on the acme.com host. Instead of trying to connect to the e-mail port of the acme.com
host, the forwarding system requests what is called an MX record from the DNS server
that has the mapping of Acme’s name. The MX record contains the IP address of
Acme’s mail server.

1.3 Iterative and Recursive DNS Requests
The client program or library that understands the DNS protocol and makes DNS
requests is known as a resolver. Most resolvers only have enough intelligence to ask its
configured DNS server to return the IP address of a given name. This is known as a
recursive request, because the resolver needs the local DNS server to do whatever it takes
to resolve the name, even if it means asking many other DNS servers for help. If the
local DNS server knows the answer, then it returns it to the resolver. If it does not know

| Technical Report NPS-CS-09-004

 3

the answer, then it has enough information to query other DNS servers one at a time until
it is resolved. These individual one-at-a-time requests are known as iterative requests.

The importance of this distinction between recursive and iterative requests is that for the
former a client will make one request to a server and wait for an answer, while the local
DNS server often communicates with other DNS servers to get the answer. In other
words, both client-to-server and server-to-server communications must be supported.

1.4 DNS Implementations
BIND (Berkeley Internet Name Domain) is the most commonly used DNS software on
the Internet, and has been available since 1987. [2][3] It is considered the reference
implementation of the DNS protocols. [4] BIND 9 is the current major release, and is
large and complex open source software with almost 400,000 lines of code1 across 1100+
files. BIND 9 constitutes a major rewrite of the previous release, and includes new
features, such as support for the larger IP version 6 addresses [5] and additional security
settings.

The BIND distribution provides three separate components: 1) the DNS daemon that
performs the DNS service, 2) a DNS library for application development, and 3) an array
of tests to verify the proper operation of the software. The code dedicated to the daemon
itself is approximately 72,000 lines of code.2 Because of its “reference implementation”
reputation, BIND implements all specified DNS functionality. In addition to the
complexity of the software, the syntax for the DNS daemon configuration file has a
reputation for being complex. There are, of course, other open source DNS
implementations [4], some of which claim to be BIND replacements, but with less
functionality, which may or may not be desirable.

In addition to open source DNS implementations, there are commercial products
available. With respect to security, perhaps most notable of the commercial products are
those from Secure64, which claims that their products are “designed from the ground up
for availability, security, and performance.” [6] However, their products have not been
evaluated against an accepted security standard (such as the Common Criteria [7]) to
verify their claims.

1.5 Mandatory Access Control (MAC)
Access control policies can be grouped into one of two categories: 1) Discretionary
Access Control (DAC) and 2) Mandatory Access Control (MAC). In addition,
supporting policies provide for accountability and other security requirements. DAC
policies provide opportunities to modify access control settings, such as who can access
an object or the name of the object owner, with implementations that present a run-time
interface to make those modifications. DAC implementations can be found in various

1 This figure was determined using BIND version 9.4.0a6. It was a “raw” count which included comments
and white space over all .c and .h files.
2 This is a result of a “raw” count of the source and header files in the bind-9.4.0a6/bin directory
hierarchy of the source tree.

| Technical Report NPS-CS-09-004

4

forms on most modern operating systems, such as recent versions of Microsoft Windows,
and all varieties of Unix.

MAC policies, on the other hand, enforce static policies and provide no run-time
interface for policy modifications, such as the sensitivity level of a subject or object, or
for changing the rules of access. MAC policies have application in government and
commercial environments. From a government point of view, files can be classified at
various levels of confidentiality, such as Secret and Top Secret. Once a file has been
marked as Secret, the owner’s desire to share the file with others is constrained to those
who are authorized (cleared) to see Secret documents, hence the name “mandatory”. If
computers or networks support a MAC policy, they are said to be Multilevel Secure
(MLS).

When a computer enforces a MAC policy, special problems must be addressed at the
policy and data labeling level. For example, the policy must clearly resolve the
following: if a file is classified as Secret, but a user trying to access it does not have the
necessary clearance: 1) Should the user be allowed to even see that the file exists?, or 2)
should the user get a “you do not have permission” error, or 3) should he get a “this file
does not exist” error? If the existence of the file should be hidden from those without
adequate authorization, it would require the system to “lie” to such people by saying it
does not exist. Conversely, if the existence of the file is to be exposed to unauthorized
users, then modulation of the file’s existence or metadata can result in covert channels
through which information can be leaked from a high sensitivity level to a low one [8].
Such MAC policy questions boil down to the following: 1) Is metadata (such as file
names and the presence of files) to be protected by the MAC policy? If so, 2) How is
static metadata to be labeled? One approach is that all static metadata must be labeled at
the same level as the data it describes. Another approach, called “compatibility”, is that
static metadata must have a confidentiality label that is dominated by the data’s
confidentiality label [9], i.e., the metadata must be labeled at or below the level of the
data it describes. Dynamic metadata must be managed in a way that does not introduce
covert channels into the system [10].

The Bell and LaPadula model was developed to formally show the soundness of a MAC
confidentiality policy, as described above, which is capable of being enforced by a
computer. [9] The model, among other things, stipulates properties that must hold true,
which are translated into the two rules given below:

• Read Down
A subject can only read objects at or below its current sensitivity level,
otherwise known as the subject’s access class.

• Write Up
A subject can only modify objects at or above its access class.

The latter rule is necessary to prevent subjects at a higher access class from writing
information from objects at a high access class into objects at a lower access class.

Supporting policies are those that are needed for the proper operation and oversight of
DAC and MAC policies. For example, DAC requires an Identification and

| Technical Report NPS-CS-09-004

 5

Authentication (I&A) policy to be in force because they depend on knowing the identity
of the user to make access control decisions. MAC requires I&A so that a session level
can be set that is commensurate with the user’s clearance or authorizations.

1.6 Session Level
When a user is added to an MLS system, the administrator must designate the user’s
clearance, which allows the system to know the confidentiality upper bound for that user.
However, when considering the rules of the Bell and LaPadula model, and how they
affect an actual implementation, it is not advisable to have subjects running with the
absolute clearance of a user at all times. Sometimes a user with a Secret clearance may
need to write Unclassified information into an Unclassified file, but any software used on
behalf of the user may not be trusted to not write Secret information into the Unclassified
file. Therefore, to prevent against undesired flows of information from high sensitivity to
low sensitivity, subjects are restricted to run at a single level, dominated by the clearance
of the user, and the user is required to specify the access class of the subjects running on
his behalf. Setting this specified access class is known as setting the session level.

For example, if a user wants to write to a Secret object, the user sets the session level to
Secret. The user may still read objects at or below the session level, but can only write to
Secret objects, per the Bell and LaPadula rules. If the user needs to write to Unclassified
objects, the Secret session must be exited, and a new session must be established at the
Unclassified level. The user is then unable to read or write to objects above the
Unclassified level, but can read and write objects at the Unclassified level.

1.7 Confidentiality Levels versus Confidentiality Categories
Most people are familiar with confidentiality levels, such as Secret and Top Secret.
There are a limited number of them. These levels are hierarchical in nature, meaning that
given two levels, either one of them will represent a greater confidentiality than the other,
or they will be equal. There is, however, a way of providing more granularity and control
of access by introducing, in addition to levels, confidentiality categories.

A confidentiality category is often a marking that provides a greater description of what
the data relates to, or what kinds of people should see the data. For example, a file could
have an access class that consists of the Secret level and the Nuclear category, perhaps
indicating that the file contains information that is related to a nuclear subject, or should
only be viewed by those engaged in nuclear research, depending on how an agency
defines its categories.

An object can be assigned only one confidentiality level, but it can have any number of
categories, including none at all. Categories are not hierarchical, thus two different
categories cannot be compared to see which has “more” confidentiality. However,
categories are used to enforce mandatory “need to know” policies. Sets of categories
may be assigned to both subjects and objects. If an object has a given category, then the
categories in the subject’s access class must be a superset of the categories assigned to
the object for the subject to read the object (as well as the usual access check on the
confidentiality level). Because there are a large number of categories within the DoD and

| Technical Report NPS-CS-09-004

6

the intelligence community, the possible number of unique access classes is large,
considering all the permutations of levels and categories.

1.8 DoD System-High Networks, Domain Names and IP
Addresses

The Department of Defense (DoD) operates several system-high networks, such as the
NIPRNET at the sensitive-but-unclassified level, the SIPRNET at the Secret level, and
JWICS at the Top Secret level. For security reasons, these networks are designed to have
limited connectivity, if any. For example, devices exist between the NIPRNET and
SIPRNET that permit limited information flow so it can only go from low to high, while
JWICS is intended to have no physical connections to lower-level networks.

Even though these networks do not really offer services to each other, and have little or
no physical connections, the DoD policy assigns IP addresses and domain names in such
a way that they remain unique across all networks [11]. There appear to be two benefits
for this policy: 1) if a high-level system accidentally connects to a low-level network (or
vice versa) there is a smaller chance that data will leak inappropriately; and 2) if all the
networks really do collapse into one integrated network in the future, the task of re-
addressing a large number of systems is avoided.

Dividing a DNS domain into sub-domains according to access class provides the obvious
benefit of helping users see the access class of a host address, and it also makes it easy to
send an iterative DNS request to the correct server. For example, the DoD uses the
“.mil” DNS domain as its root, the “.smil.mil” as a Secret DNS sub-domain, and perhaps
“.ts.mil” for a TS DNS sub-domain.

1.9 MYSEA Testbed
The Monterey Security Architecture (MYSEA) Testbed was built to support research on
MLS services, clients and networks [12]. It consists of a federation of high assurance
MLS MYSEA Servers that connect to several single-level networks running at different
simulated confidentiality levels, as well as a single MLS network. By changing their
session level, users on the MLS network can access the single-level networks without
moving to a different client. In return, users on the single-level networks can access
services on MYSEA Servers configured to respond to their access class.

A primary objective of the multilevel testbed research project is to demonstrate how U.S.
participants can use a single workstation for multilevel access to U.S. and coalition
WANS at different classification levels. Currently, the testbed supports experimentation
with access to multilevel as well as multiple single level (MSL) networks. It supports
commercial office productivity applications in the context of high assurance multilevel
security. The Testbed also supports experimentation and development of MLS aware
applications in the context of high assurance MLS policy enforcement and dynamic
security services, two areas that are critical to the realization of the DoD’s vision for
assured information sharing [12].

| Technical Report NPS-CS-09-004

 7

The MYSEA server acts as a nexus for MLS policy enforcement and for communication
between the MLS network and the several single-level system-high networks. For users
on the MLS network, it provides a variety of MLS services, such as e-mail and web
services. This is done by securely binding a client’s IP address to the user’s session level.
For example, when a user requests a web page, the MYSEA Server spawns a web
daemon with the user’s credentials and session level. The daemon is restricted by the
policies enforced by the underlying server.

The MYSEA Testbed is prototyping a multiple single-level-at-a-time (SLAT) client that
can interact with the MYSEA server in a secure manner. An MSL client can operate at a
particular session level at one time, but can read information at a lower sensitivity level
and perhaps write up, e.g., send e-mail to a higher sensitivity level.

The testbed is currently limited in its DNS capabilities. Each single-level network can
run its own DNS server to service systems on its respective network. While the clients
on the MLS network can be configured to use one of the single-level networks for DNS,
they cannot access a DNS server that manages all the available access classes without
modifying the DNS settings after each change of session level. In addition, there is no
multilevel DNS service provided by the MLS Server, for example, so that a client on a
Secret network could read DNS information from an Unclass DNS server.

1.10 Global Information Grid
The Global Information Grid (GIG) is a DoD network of networks. The GIG Vision [13]
is an attempt to describe the desired functionality of the GIG in the year 2020. In this
vision, the system-high networks (e.g., NIPRNET and SIPRNET) are collapsed into one
secure MLS network with clients that are either dedicated to a single access class or an
MSL client.

1.11 Covert Channels
A covert channel is an unintentional method of communicating data between two or more
parties by manipulating return values or timing changes in relation to a sequentially
accessed shared resource. Covert channels are of special interest in MLS systems
because they can potentially provide a way to bypass the enforced MAC policies. For
example, a high-level subject can transfer a bit of information by either filling up a disk,
or not filling up a disk, while a low-level subject is either successful creating a new file
(or unsuccessful) at the agreed upon time. Systems that enforce MAC policies must be
carefully designed to eliminate or seriously impede covert channels.

1.12 Trusted Computing Base
The hardware, firmware and software that are trusted to enforce a system’s security
polices are known as the Trusted Computing Base (TCB). The security perimeter is the
logical boundary between the TCB and the untrusted parts of the system.

| Technical Report NPS-CS-09-004

8

1.13 Trusted Subjects
An MLS system should enforce its policies in the lowest layers of the overall system,
such that they are always invoked when a subject tries to get access to an object. There
can be designs, however, that require applications to support a MAC policy. Generally,
these are in higher layers within the overall system. In such cases, these applications are
referred to as trusted, because they are trusted to ensure that the intent of the security
policy is observed outside the kernel or operating system. Having trusted applications
extends the security perimeter to encompass those applications and any parts of the
system the trusted applications depend upon. Trusted subjects usually permit something
contrary to the enforced policy to occur, but they are trusted to observe the intent of the
policy. When dealing with sensitive data, such applications must be worthy of that trust,
which only comes from adhering to rigorous development practices that address security
concerns. High assurance can be achieved by following requirements derived from well-
known standards, such as those described in the Common Criteria (CC) [7]. In general, a
well-designed MLS system limits its dependence on trusted subjects, if they are used at
all. For example, modifying an open source web server to enforce a MAC policy of some
sort would make the web server a trusted subject, but it is not worthy of that trust, and is
likely a bad design choice. Just because it is trusted does not mean that it is trustworthy.

2 The Problem
This section provides specific direction and MLS DNS requirements, as well as policy
assumptions and design considerations.

2.1 Research Scope and Focus
This research focuses on the confidentiality of DNS data, as it is requested from clients
that are operating at different access classes. It does not focus on other important aspects
of DNS security, such as integrity and authenticity of name resolutions.

2.2 Policy Assumptions
The security policy, with respect to IP addresses and network device names, is assumed
to be the following:

1. While servicing clients at its sensitivity level, a DNS daemon can read lower-
level DNS data files and provide the mapping to the requesting client.

For example, a Secret subject may obtain the IP address of an Unclassified
network device if it knows the name of the device. Preventing the actual
TCP/UDP connection from high to low is a network policy enforcement issue
that is not considered in this report.

2. A lower sensitivity level DNS client cannot resolve higher sensitivity level
names, mappings, or other metadata.

To limit covert channels, the client must get the same response whether the
name exists or not.

| Technical Report NPS-CS-09-004

 9

3. Fully qualified domain names (i.e., the host name concatenated with its DNS

domain name) are unique across an MLS enterprise network, as one would
expect from the IP specification.

2.3 MLS DNS Requirements
The following list describes the requirements that an MLS DNS design must satisfy.

1. Hosts shall be able to query a configured DNS server to resolve a name to an IP
address without leaking information from high to low. This includes hosts that
operate at a single access class as well as hosts with MLS capabilities.

2. DNS daemons shall be able to perform iterative queries that pass on enough
information to other DNS servers (e.g., the original requestor’s access class) to
allow the queried DNS server to make appropriate MAC policy decisions.

3. DNS data shall be protected from observation and modification by unauthorized
subjects when stored on DNS servers. It is assumed that encryption is used to
protect network communications on MLS networks, commensurate with the
level(s) of data transmitted.

4. Hosts requesting DNS data that exists at lower sensitivity levels shall be able to
obtain it (i.e., perform a read down).

5. Access to DNS data shall be controlled based on the access class of the requesting
subject and the access class of the DNS data.
We desire a DNS service in which individual DNS records may be labeled so that
a coherent Enterprise IT security policy is possible. This labeling must be on a
record-by-record basis, a file-by-file basis, or a system-by-system basis (e.g., a
particular DNS server only has names and IP addresses for one particular access
class). No matter which granularity is used, enforcement of the MAC policy must
be based on the access class of the requesting subject and the classification of the
requested DNS data.

6. The assurance provided in components that store or resolve DNS data shall be
commensurate with the confidentiality of the data and the operation of other
subjects running on the component.

7. The MLS DNS design shall be able to scale to a large number of access classes,
both in terms of DNS data and requesting subjects.

2.4 Some Implementation Considerations
To illustrate some of the MLS DNS issues, Figure 1 shows a potential MLS network,
where there exist single-level networks attached to an MLS network backbone, as well as
a mix of MLS clients and servers. The figure shows the DNS resolution for PC2, that
will allow PC2 to communicate with PC1, where both PC1 and PC2 are operating at the
Secret level. Because PC2 does not have the destination IP address for PC1 it contacts its
local DNS server to perform a search which is recursive from the perspective of PC2 but
iterative at the local DNS server (step 1). The local DNS server does not know the
complete answer, but the information provided is sufficient to cause it to contact an MLS
DNS server (step 2). However, the MLS server cannot complete the answer either, but it
does provide to the local DNS server the IP address of a server that should know the IP
address for PC1 (step 3). The local DNS server queries the DNS server in the destination

| Technical Report NPS-CS-09-004

10

domain for the IP address of PC1 (step 4), which it returns (step 5). The local DNS
server returns the desired IP address to PC2 (step 6), which then communicates with PC1
(steps 7 and 8), by sending an IP packet with that destination address onto the network.

“Broadcasting” of IP packets on an MLS network raises the question of MLS policy
enforcement and covert channels. It is assumed that the payload of messages higher than
the level of the network will be suitably protected (encrypted), and that protection against
traffic analysis of hosts higher than the level of the network will be provided.

Figure 1. DNS in an MLS Context

The point of Figure 1 is to show that single-level networks sitting off an MLS backbone
may have their own single-level off-the-shelf unmodified DNS servers that may be
configured to connect to root DNS servers that operate across many levels. Local
networks that have MLS capabilities will need a local MLS solution, which must be able

| Technical Report NPS-CS-09-004

 11

to communicate with single-level DNS servers in other networks, as well as other MLS
servers. In addition, the root DNS server(s) will need to be MLS because they are
typically responsible for communicating with all DNS servers (at all access classes)
within its DNS domain.

Another issue, depending on the design, is that there may be a requirement for the DNS
server to know with a high degree of confidence the access class of the subject making
the DNS request so that a lower-level subject cannot obtain higher-level DNS data. In
such designs a secure and non-spoofable protocol would have to be developed for
providing the access class to DNS servers.

3 Recommendations
After considering a number of approaches for enabling DNS in a MLS environment, the
following subsections describe the recommendations for DNS in two specific and
separate environments: the MYSEA Testbed and the DoD GIG Vision. The MYSEA
Testbed and the DoD GIG Vision were briefly described in Sections 1.9 and 1.10
respectively. For comparison with the recommended approaches, Appendix A describes
other possible MLS DNS architectures that were considered.

In addition to the policies and requirements discussed in Section 2, a number of factors
affect prospects for near term implementation of MLS DNS. The ideal solution would be
one that required no modifications to current DNS software or protocols and was highly
trustworthy. Thus, a solution that minimizes modification and disruption of current DNS
architectures is sought. In addition, issues associated with the system’s operational
environment as well as resources available for its construction must be considered.

3.1 MYSEA Testbed
The recommended solution for near-term demonstration on the MYSEA Testbed
(described in Section 1.9) uses a custom DNS proxy and an unmodified single level
COTS DNS service per level on each DNS platform. Each daemon has its own file of
DNS mappings. The proxy is a trusted subject that routes the request to the appropriate
DNS daemon and enforces the MAC policy with respect to the access class of the request
and the access class of the DNS daemon, as shown in Figure 2. The access class of a
DNS request is based on the client IP address. Changes to a client session level will
require a corresponding update to the DNS proxy’s table of IP address levels. This is
similar in design to the Secure Security Services (SSS) already implemented in the
MYSEA Testbed.

| Technical Report NPS-CS-09-004

12

Figure 2. Recommended Approach for MYSEA Testbed

This approach is appealing because MYSEA already has functionality similar to the
described proxy running on a high assurance MLS server, and the MYSEA Server
already maintains the session level associated with client IP addresses. The DNS proxy
could be used to start DNS daemons on the MLS server to answer queries about the MLS
domain, or forward DNS queries to the appropriate DNS server on a single-level network
for resolution in other zones. The OS ensures that the daemons can only access the
appropriate DNS databases, and the multilevel proxy must forward requests to
appropriate single level daemons.

With multiple DNS daemons running on one physical platform, this approach will use
more resources than a normal single instance of DNS. The concern about scaling up to
some large number of supported access classes on the MYSEA Server can be reduced
somewhat because the proxy could be modified to only start DNS daemons at access
classes that are actually requesting DNS data. For example, if DNS requests are only
being made from Unclass and Secret clients, then instances of the DNS daemon will only
be started at Unclass and Secret; the DNS daemon could be left running as long as
requests continue to arrive for its access class. The proxy could be modified to stop the
daemon after a configured amount of time has elapsed with no DNS traffic arriving for
that daemon. Or, the DNS daemon could be modified to exit after a specified period of
inactivity.

| Technical Report NPS-CS-09-004

 13

With respect to the question of DNS daemons being able to read lower-level information,
there are two possible solutions for this MLS DNS proxy, Single Level Daemon
approach. In the first solution the daemons can be configured to read the lower
sensitivity DNS data, as long as the names associated with the lower sensitivity level IP
addresses are in DNS zones that are distinct from higher sensitivity level zones, e.g.,
host.mil versus host.smil.mil, otherwise there could potentially be one name that exists at
multiple levels that maps to different IP addresses at each of those access classes. Instead
of reading multiple DNS mapping files, the second solution for reading lower sensitivity
level mappings is to merge all the appropriate DNS data files for a daemon into one file
prior to the start of each daemon (i.e., merge only the files that are at or below the level of
the starting daemon). The merging could be done intelligently by performing a new
merge of the data only if one of the input files has changed. An added benefit to this
second solution to reading lower-level information would be the identification of IP
addresses and host names that have mistakenly been assigned to more than one access
class.

DNS policy decisions are MAC-based, so policy decisions do not require the name of the
user making the request; the DNS proxy only needs to know the level of the original DNS
request. Therefore, if iterative DNS requests will take place between two or more MLS
DNS servers, then a protocol for passing the access class of the request between proxies
must be created.

A positive side effect of the MLS DNS proxy, Single Level Daemon approach is that
system administrators do not need to be concerned with the access class of DNS servers
when configuring DNS clients; all clients on single-level or MLS networks, regardless of
access class, are configured with the same MLS DNS Server IP addresses. This removes
the possibility of mis-configuring a client with the IP address of a higher-level DNS
server.

Unfortunately, this approach to implementing a MLS DNS solution in the MYSEA
Testbed extends the security perimeter beyond the OS to include the proxy application,
since it helps to enforce the MLS policy. However, this approach might not require
modifications to existing DNS software (depending on how the proxy is designed, and
how the existing DNS software can work with a proxy), but it does require the
development of new software, i.e., the DNS proxy.

3.2 DoD GIG Vision
The DoD GIG Vision has an overall design that is similar to the MYSEA Testbed,
namely, it has single level networks at varying access classes that are connected to a
common MLS backbone. It is also envisioned that there would be some number of MLS
clients and servers. [13] Therefore, one MLS DNS solution would be the implementation
of the MYSEA architecture, as described above. If the MYSEA architecture is not
suitable for one or more reasons to be determined, this section describes an alternative
approach for the DoD GIG Vision.

| Technical Report NPS-CS-09-004

14

This approach uses an (to be determined) operating system (OS) to interpret destination
IP addresses and route DNS requests to a single-level DNS daemon. There is one DNS
daemon per access class, but they are all running on one physical server (or some set of
servers, depending on the load), as shown in Figure 3.

Figure 3. Recommended Approach for DoD GIG Vision

This is similar to the MYSEA Testbed recommendation, described in Section 3.1, but the
differences are subtle and important. In this approach, the mechanism for multiplexing
the DNS request is the operating system (not an application-level proxy). The OS routing
decision to a DNS daemon is based on the destination IP address of the requesting
packet rather than the access class of the requester (as with the MYSEA approach).

Each DNS daemon would have to be configured to listen to a different IP address,
because each is listening to the same TCP/UDP port. The operating system would have
to support the ability to assign multiple IP addresses to the same network interface card
(NIC), which is a feature that may not be currently available. (Note that having multiple
NICs, with one access class per NIC does not scale well, nor is it flexible enough to
accommodate dynamic changes to the number of access classes as policy evolves). Each
client would be configured with the IP address of the correct DNS server for its access
class, so there is no need to dynamically communicate the access class of the request to
the DNS daemons, which is very appealing because it eliminates the need to develop new
software or modify existing DNS software.

A different view of this approach is to use a high assurance separation kernel [14][15] as
the trusted decision maker, which forwards the requests to daemons running in separate

| Technical Report NPS-CS-09-004

 15

partitions. The daemons would return the responses to the decision maker to forward to
the requesting client.

As with the MYSEA solution: 1) having one DNS daemon per access class requires more
hardware resources than the normal single instance per DNS server, so scaling to a larger
number of access classes would require additional servers to handle the load; 2) this
approach also requires a high assurance MLS server to ensure that the untrusted DNS
daemons servicing lower-level access classes cannot read the higher-level DNS data files;
and 3) the tradeoff for not needing new DNS daemon software must be balanced with the
cost of buying MLS servers, because high assurance MLS servers tend to be expensive
and feature-poor.

Supporting DNS requests from MSL or MLS clients becomes an issue because the
destination IP address for the DNS server depends on a user’s changing session level. An
MLS client can only be supported in this approach if the client OS, or a client proxy like
the Trusted Path Extension (TPE) [12], can dynamically change the destination DNS
server IP address based on the session level of the requesting subject.

This approach can easily deal with the problem of recursive lookups by DNS daemons.
All daemons would be configured to query DNS servers (via a destination IP address)
that store the same level of information. Therefore, no changes in DNS protocols are
required to support it.

This approach assumes that the GIG Vision network will have some method of
identifying and handling inappropriate requests (e.g., a deliberately misconfigured lower
sensitivity level client that tries to resolve names with a DNS server that is meant to
service higher sensitivity level requests). For example, there could be a cryptographic
binding of an IP packet to an access class, which can be verified by a trusted component.

Currently, there is no appropriate high assurance OS available that can support the
solution described in this subsection.

4 Previous Work
No previously published research was found that directly addressed the problems of DNS
in an MLS environment. There are, however, publications that describe multilevel
solutions for related functions. These are summarized below.

4.1 Multilevel Relational Databases
Beginning with the 1982 “Summer Study” [16] much has been researched and written
about securely supporting multilevel data in a relational database [17][18][19]. In such a
database, the records in a table will likely have various classifications. The results of a
database query would therefore be dependent on the access class of the subject making
the request; a higher-level subject would see records at more sensitivity levels than a
lower-level subject, as expected.

| Technical Report NPS-CS-09-004

16

An unexpected quality of a multilevel database is the result of inserting records into the
database, similar to the problem of handling metadata in an MLS file system (see Section
1.5). If a subject at a lower level tries to insert a new record, but the primary key of the
new record already exists at a higher level, what should the database do? If the record is
accepted, then two records exist with the same primary key – something that goes against
the “rules” of relational databases. On the other hand, if the record is not accepted, as
one would expect, the lower level subject is able to infer knowledge that exists at a higher
level. This could be used as a covert channel for information leakage. In this situation
the SeaView model [19] accepts the record with the duplicate key by considering the
primary key to be a combination of the defined field and the classification of the inserted
data. This existence of two records with the same traditional primary key is known as
polyinstantiation. However, due to the current understanding of how the DoD networks
are managed, names and IP addresses are unique across all classified networks, so there
should be no polyinstantiation issues to deal with in the DoD multilevel DNS
architecture. There may indeed be system administrators at varying levels of clearance
inserting records into the DNS data files for their local name space, but the operational
management of the names and addresses (i.e., the distribution of IP addresses by a central
high-level office) should prevent a situation where two or more different answers to a
query are possible, depending on the subject’s access class.

4.2 Multilevel DoD Directory Services
There was some prior research performed to design a multilevel directory service for the
DoD. “Directory service” in this context refers to an X.500-style “white pages” and
“yellow pages” service where information about individuals or other entities could be
stored and publicly queried. A prototype directory service was implemented on a
prototype implementation of the SeaView model. [20]

The X.500 architecture consists of a series of distributed and “hierarchically organized”
servers (known as Directory System Agents, or DSAs) that can either answer a query
directly if it has the requested data, or it can query the next DSA (recursively, as with
DNS) in the chain to continue the search. The DoD requirements for the directory
services included the support for both classified and unclassified data, as well as users
with different clearances. [20]

Because X.500 was not designed to handle multiple classifications of data, the research is
very applicable to the multilevel DNS problem. One analysis concluded that the most
useful approach was to deploy high assurance servers on an MLS network where both
high and low level data would be stored, and to have the DSA implementations run
mostly as trusted subjects on the MLS servers, where the applications were aware of and
helped to enforce the security policy [21]. The requesting clients would be single-level.
However, recognizing that such high assurance MLS systems and software did not exist,
the recommended short-term approach was to use high assurance MLS servers, each
attached to several single-level networks, where MLS-ignorant single-level subjects (per
access class) on the server could service the requests made by clients within the single-
level networks. [21] These are both viable solutions for multilevel DNS under certain
conditions.

| Technical Report NPS-CS-09-004

 17

5 Future Work
This research focused on environments where IP addresses and names are distinct across
access classes, as one would expect from the IP specification. No analysis was
performed with respect to polyinstantiation of addresses.

There cannot be a complete discussion of DNS without also considering how it affects
the Dynamic Host Configuration Protocol (DHCP) [22]. This research should be
expanded to consider the effects of the proposed solutions on DHCP. Is a MLS DHCP
server necessary and, if so, how should it be designed to work with MLS DNS?

In addition to the impact on the DHCP protocol, additional research is needed to consider
how MLS affects an implementation or configuration of the DNS Security Extensions
(DNSSEC) [23]. The DNSSEC protocol uses public key technology to provide integrity
and authenticity of DNS data.

An investigation to determine the characteristics of the current open source options for
DNS daemons should be conducted. Which software is most conducive to being
modified, e.g., which has the best documentation, best layering, the right combination of
features, etc?

DNS has a little-used record type, LOC, which with appropriate authentication could be
used to document the location of a particular network node, requiring longitude, latitude
and altitude in its syntax. It may be possible to use this in some way to provide context-
sensitive information for the GIG Vision Risk-Adaptive Access Control (RAdAC),
which, among other things, uses the location of a subject to make access control
decisions.

Research is needed to determine whether the current DNS protocol provides optional
fields in the defined TCP/UDP packets that might be used in some way to communicate
the access class of a DNS request with high assurance rather than basing the access class
on the requestor’s address. In other words, is it possible to securely label a DNS request
in some fashion without modifying the DNS header specification? At the same time,
research can be performed on the IP header to determine if it can be used to communicate
access class information securely. Encryption may be yet another option for
communicating an access class based on a given key, or some other feature of encryption
protocols, such as IPSEC.

| Technical Report NPS-CS-09-004

18

[THIS PAGE IS INTENTIONALLY BLANK]

| Technical Report NPS-CS-09-004

 19

References
[1] Socolofsky, T., Kale, C., TCP/IP Tutorial, Request for Comments 1180,

January 1991.
[2] Albitz, Paul, Liu, Cricket, DNS and BIND, O’Reilly and Associates, Inc.,

Sebastopol, CA, 2004.
[3] Internet Systems Consortium: A Brief History of BIND,

http://www.isc.org/index.pl?/sw/bind
[4] DNS for Rocket Scientists, Appendix C: DNS Resources,

http://www.zytrax.com/books/dns/apc/
[5] Deering, S., Hinden, R., Internet Protocol, Version 6 (IPv6) Specification,

Request for Comments 2460, December 1998.
[6] Secure64 DNA Authority, http://www.secure64.com, datasheet

S64DNS_2.4_v1.
[7] Common Criteria for Information Technology Security Evaluation,

Version 2.3, August 2005, CCMB-2005-08-001.
[8] Lampson, B., A Note on the Confinement Problem, Communications of

the ACM, Volume 16, Issue 10, October 1973, pp. 613-615.
[9] Bell, D.E., La Padula, L.J., Secure Computer System: Unified Exposition

and Multics Interpretation, Electronic Systems Division, Air Force
Systems Command, United States Air Force, Hanscom Air Force Base,
Report MTR-2997 Rev. 1, march 1976.

[10] Irvine, C.E., A Multilevel File System for High Assurance, Proceedings of
the 1995 IEEE Symposium on Security and Privacy, May 1995, pg. 78.

[11] Confirmed via e-mail communications with both a Navy security officer
and an Air Force security officer.

[12] Nguyen, Thuy D., Levin, Timothy E., MYSEA Testbed, Proceedings from
the 6th IEEE Systems, Man and Cybernetics Information Assurance
Workshop, West Point, NY, June 2005, pp. 438-439.

[13] National Security Agency Information Assurance Directorate, Executive
Summary of the End-to-End IA Component of the GIG Integrated
Architecture, Version 1.0, October 26, 2004.

[14] U.S. Government Protection Profile for Separation Kernels in
Environments Requiring High Robustness, National Information
Assurance Partnership, version 1.03, June 29, 2007.

[15] Levin, Timothy E., Irvine, Cynthia E., Nguyen, Thuy D., Least Privilege
in Separation Kernels, Proceedings of the International Conference on
Security and Cryptography, Setubal, Portugal, August 2006, pp. 355-362.

[16] Multilevel Data Management Security, Committee on Multilevel
Management Security, Air Force Studies Board, National Research
Council, Washington, DC, 1983.

[17] Hinke T.H., Schaefer, M., Secure Database Management System, RADC-
TR-75-266, Final Technical Report, System Development Corporation,
November 1975.

| Technical Report NPS-CS-09-004

20

[18] Denning, Dorothy, et. al., A Multilevel Relational Data Model,
Proceedings of the 1987 IEEE Symposium on Security and Privacy, June
1987, pp. 220-234.

[19] Lunt, Teresa F., Schell, Roger R., Shockley, William R., A Near-Term
Design for the SeaView Multilevel Database System, IEEE Symposium on
Security and Privacy, April 1988, pp 234-244.

[20] Gaon, David, Concept for Implementing a Globally Distributed X.500-
Based DoD Directory, Conference Record of the 1992 IEEE Military
Communications Conference, Volume 3, pp. 1195-1199.

[21] Boucher, P.K., Lunt, T.F., A Prototype Multilevel-Secure DoD Directory,
Proceedings of the 10th Annual Computer Security Applications
Conference, December 1994, pp. 180-188.

[22] Droms, R., Dynamic Host Configuration Protocol, Request for Comments
2131, March 1997.

[23] Arends, R., Austein, R., Larson, M., Massey, D., Rose, S., DNS Security
Introduction and Requirements, Request for Comments 4033, March
2005.

[24] Domain Name System, Security Technical Implementation Guide,
Version 3, Release 0.1 (Final Draft), 2006-05-15, Defense Information
Systems Agency.

| Technical Report NPS-CS-09-004

 21

Appendix A: Other Possible MLS DNS Architectures
This Appendix documents several alternative MLS DNS approaches that were considered
when examining the needs of the MYSEA Testbed and the GIG Vision. Each approach
is described, along with its advantages and disadvantages.

Approach 1: One COTS DNS Daemon Using DNS Views
In this approach there is one Commercial off-the-shelf (COTS) DNS daemon on each
DNS platform and a data file for each access class. The access class of the DNS request
is determined by the source IP address of the DNS request.

This approach can be implemented using a mechanism introduced by BIND 9 called
views. Views allow a DNS server to respond differently to a DNS request, depending on
the IP address of the requestor, as shown in Figure 4. The DNS data files are populated
based on the access class of the IP address.

| Technical Report NPS-CS-09-004

22

Figure 4. Approach 1: One COTS DNS Daemon Using DNS Views

The DNS daemon bases its view decision on the source IP address of the requestor,
which indicates which DNS data file to refer to when searching for a match. This
approach does not require the DNS daemon to directly know the access class of a DNS
request; rather, that information is encoded in the source IP address and DNS
configuration file.

Approach 1 Disadvantages
Views are established by specifying a range of IP addresses, such as “192.168.1/24” or
by one of the following special tokens: “any”, “none”, “localhost”, and “localnets”.
Therefore, the use of views will only work if the network address space is divided by
access class, as currently done in the GIG. The number of supported access classes is
therefore limited to defined ranges of addresses. In addition, a statically addressed client
could not operate at multiple session levels, but instead must be tied to a specific access

| Technical Report NPS-CS-09-004

 23

class. Therefore, an MSL client is only possible if the client OS uses a source IP address
for network communications that corresponds to the access class of the requesting subject
(i.e., a different IP address per access class).

This approach extends the security perimeter all the way to the application layer,
requiring the potentially untrustworthy DNS application to make access control
decisions. In other words, it is trusted to do the right thing but if not specially built and
evaluated it will not be worthy of that trust. For example, there is no guarantee that the
code is un-modifiable (e.g., free of buffer overflow vulnerabilities) and no guarantee that
policy enforcement could not be bypassed. There is also no guarantee that there is no
unspecified behavior in the code, such as Trojan horses or backdoors. If a high assurance
version of DNS daemons was available to run on a high assurance OS, all these concerns
become irrelevant. Unfortunately, such daemons do not currently exist.

Because there are no access class comparisons to determine whether the mapping should
be provided to the requestor, the DNS daemon does not enforce MAC policy, but rather
enforces a configuration. Therefore, though this approach appears to work, it is not a true
MLS solution. Without modification of the BIND software, read-down is only possible if
the information in lower-level views is copied to higher-level views. This problem could
be minimized by having a script that merges the DNS mapping data together at DNS
server startup. However, updates to the lower-level DNS data files made after daemon
startup would not take effect at higher levels without an occasional resynchronization of
the data files

Because the policy is being enforced based on the source IP address of the requestor, the
underlying network access control would have to be able to detect a system that has had
its IP address changed to an improper range for the device, and then disallow network
communications. All other known types of IP spoofing attacks would also need to be
addressed as well, to ensure the integrity of source addresses.

Though this approach initially appears to require no modifications to existing DNS
software, this is false. When the daemon needs to perform a recursive DNS query there
needs to be some mechanism for passing access class information (which in this case is
the source IP address of the originating query) to the downstream DNS servers. Such a
mechanism would require some level of modification to the existing DNS software.
Without a high assurance DNS implementation or modification, this approach does not
meet the high assurance requirement as stated in 2.3.

If the underlying system does not provide MLS functionality, then the OS cannot separate
DNS data files based on the classification of the data. In such a situation the DNS
daemon must be the only process running on the server. This will protect the DNS data
files from other untrustworthy programs.

| Technical Report NPS-CS-09-004

24

Approach 1 Advantages
With this approach, system administrators do not need to be concerned with the access
class of DNS servers when configuring DNS clients. This removes the possibility of mis-
configuring a client with the IP address of a higher-level DNS server.

No MLS servers are required to run the DNS daemon, though the enforcement method
for a network access control policy may have its own MLS requirements.

Approach 2: One COTS DNS Daemon, Multiple Single-Level DNS
Data Files
In this approach the DNS view feature is modified to use the access class of the
requesting subject (rather than the source IP address) to determine the DNS data file to
search. This approach, shown in Figure 5, is very similar to Approach 1 where the DNS
daemon enforces the MAC policy.

| Technical Report NPS-CS-09-004

 25

Figure 5. Approach 2: One COTS DNS Daemon, Multiple Single-Level DNS Data
Files

Approach 2 Disadvantages
Since policy enforcement is being performed by an untrusted application, this approach
has the same concerns as those described in Approach 1.

The existing DNS software would need to be modified to implement Approach 2. Even
given that the code changes could be implemented successfully, the cost of maintaining
and upgrading the software would have to be considered. These include fixing security-
relevant bugs that have been found in BIND, or software updates as changes to the DNS
protocol are ratified and new versions of BIND are released.

| Technical Report NPS-CS-09-004

26

Without additional modifications to the DNS software, the daemon would not be able to
resolve names that exist at a lower level, because the lower level DNS data are in
different files. However, it may be possible to merge DNS data files appropriately at
daemon startup. Changes made after startup would not take effect at higher levels
without an occasional resynchronization of the data files.

Even though this approach does not require special MLS functionality from the
underlying system, it should require a high level of assurance, since access control
decisions are being made on the system. If a high assurance operating system is used,
hardware choices will be limited because such operating systems are evaluated against a
limited set of hardware. If the underlying system does not provide MLS functionality,
then the configuration of the server should be restricted as described in Approach 1
Disadvantages. Without a high assurance DNS implementation or modification, this
approach does not meet the high assurance requirement, as stated in 2.3.

In addition to DNS source code modifications this approach requires the development of
trusted protocols and software to communicate the access class of the requester of the
DNS translation to the DNS daemon and then to DNS servers that are queried to handle
iterative requests.

Approach 2 Advantages
The hardware requirements for the DNS server in this approach would not be any greater
than a “normal” DNS server because only one DNS daemon is needed per system.

With this approach, system administrators do not need to be concerned with the access
class of DNS servers when configuring DNS clients. This removes the possibility of mis-
configuring a client with the IP address of a higher-level DNS server.

The syntax of the DNS data files would not need to change, which makes the
modification of the BIND source code easier than it otherwise would have been.

Approach 3: One DNS Daemon, One DNS Database
This approach uses a single modified COTS DNS daemon with an MLS DNS database.
It uses one DNS daemon as a trusted subject to enforce the MAC policy with respect to
name resolution. The daemon compares the access class of the DNS request to the access
class of the stored name-to-address mapping to determine whether the information should
be released to the requestor, as shown in Figure 6.

| Technical Report NPS-CS-09-004

 27

Figure 6. Approach 3: One DNS Daemon, One DNS Database

Approach 3 Disadvantages
This approach extends the security perimeter all the way to the application layer, which
has the same concerns as those described in Approach 1 Disadvantages.

The existing DNS software would need to be modified to read a new set of configuration
data to help enforce the new policy. In addition, changes would have to be made to
support the passing of access class information when iterative DNS requests are sent to
other DNS servers. Even if the code changes could be implemented successfully, the cost
of maintaining and upgrading the software would have to be considered. These include
fixing security-relevant bugs that have been found in BIND, or software updates as
changes to the DNS protocol are ratified and new versions of BIND are released.

Even though this approach does not require special MLS functionality of the underlying
system, it requires a high level of assurance, since access control decisions are being
made on the system. If a high assurance operating system is used, hardware choices will
be limited because such operating systems are evaluated against a limited set of
hardware. If the underlying system does not provide MLS functionality, then the
configuration of the server should be restricted as described in Approach 1
Disadvantages.

This approach also requires the development of trusted protocols and software to
communicate the access class of the requester of the DNS translation to the DNS daemon
and then to DNS servers that are queried to handle iterative requests.

Approach 3 Advantages
The hardware requirements for the DNS server in this approach would not be any greater
than a “normal” DNS server because only one DNS daemon is needed per DNS system.

| Technical Report NPS-CS-09-004

28

All DNS clients could be configured with the same single IP address for DNS resolution,
without regard to the potential access class of the DNS request. This removes the
possibility of mis-configuring a client with the IP address of a higher-level DNS server.

Approach 4: Many DNS Daemons on Many Physical Servers
In this approach there exists one DNS platform per access class, each with one DNS data
file. DNS clients are configured to resolve queries with a server of the same access class,
as shown in Figure 7.

Figure 7. Approach 4: Many DNS Daemons on Many Physical Servers

Approach 4 Disadvantages
This is not a true MLS solution, but rather achieves separation of data by physical
separation and configuration of components.

Supporting DNS requests from an MLS client becomes an issue because the destination
IP address for the DNS server depends on a user’s session level, which changes. An
MLS client can only be supported in this approach if the client OS can dynamically
change the destination DNS server IP address based on the session level of the requesting
subject.

| Technical Report NPS-CS-09-004

 29

Supporting multiple physical DNS servers increases the cost of hardware, operation and
maintenance. From a DNS point of view, there would be no cost savings by merging the
currently separated DoD networks because there would still be (at least) as many DNS
servers after the merge.

Each client system needs to be configured with the IP address of its local DNS server. In
this approach, instead of that address being the same for all clients, it would change,
depending on the highest-level of data the client is authorized to process and store, which
introduces the potential for misconfiguration and leakage of data from high to low.

The DNS daemons supporting higher-level access classes would not be able to resolve
names that exist at a lower level, because the lower level DNS data are on different
machines.

Some method of identifying and handling inappropriate DNS requests must be
developed, (e.g., a deliberately misconfigured lower-level client that tries to resolve
names with a DNS server that is meant to service higher-level requests).

Approach 4 Variations
One variation to provide read down would be to manually merge lower-level information
with the data maintained on the higher-level DNS servers, which is error prone, slow and
costly.

Another variation is to have a high assurance administrative console that actually
manages the DNS data files (i.e., a “hidden master”) and pushes updates out to the DNS
servers, including lower-level data merged with the higher-level DNS data files.

Approach 4 Advantages
Absolutely no modifications to DNS software or file syntax will be required, greatly
reducing the cost of implementation (to be balanced with the increased hardware costs),
as well as the risk of implementation failure.

No expensive MLS servers are required to run the DNS daemon, though the method for
enforcing a network access control policy may have its own MLS requirements.
Otherwise, commodity hardware and operating systems can be used with this approach.

This approach can easily deal with the problem of DNS servers needing to perform
iterative DNS queries; all servers are only configured to query DNS servers that store the
same level of information. Therefore, no changes in DNS protocols are required to
support it.

Approach 5: Treat all IP Addresses as Unclassified Data
Within a distributed MLS environment (e.g., enclave or group of enclaves) in which
network addresses are not sensitive, a standard COTS DNS platform, daemons and data
files can be used. If all DNS data is labeled Unclassified, then a DNS daemon could
execute at the Unclassified level on an MLS server. A problem arises because subjects

| Technical Report NPS-CS-09-004

30

executing at a higher access class would be unable to query a DNS subject running at the
lower level, because it would involve a write down, and would violate basic Bell-
LaPadula rules. One solution is to execute the DNS daemon as a trusted subject that is
MLS ignorant. It would be able to read the DNS data at all access classes as well as
communicate with subjects at all access classes. An easier approach is to use a
commodity OS that does not support MLS, and communicates with no regard to access
class, but this introduces possibilities for information leakage channels.

If a network device was named in a way that revealed its access class or importance (e.g.,
veryimportantserver.navy.mil), then that is a problem of a different sort, and could be
dealt with via policy statements, such as those found in DoD Operational Security
(OPSEC) policies [24] that require network devices to be named in such a way that the
names do not provide sensitive information about the devices.

Approach 5 Disadvantages
This approach would only be acceptable in environments in which IP addresses are not
sensitive. In addition, in order to provide high assurance, the DNS daemon or the DNS
resolver in the clients must be trustworthy, because the DNS daemon can communicate
with subjects at all levels, introducing a channel for information leakage. This appears to
remove what appeared to be the major advantage to this approach: use of COTS hardware
and software to support DNS, because no high assurance DNS implementations exist, and
these would therefore have to be implemented from scratch using high assurance
methods.

Approach 5 Advantages
This approach will work in harmony with any other approach, even in the GIG, where
various organizations may have different policies about IP address sensitivity, assuming
each organization has control over its DNS servers.

This approach does not require any modifications to the DNS configuration and data
files, but the need to re-write the DNS software makes the advantage somewhat
irrelevant.

This approach does not need MLS functionality from the underlying OS, reducing the
potential cost of the DNS servers. Commodity hardware and operating systems can be
used with this approach. This approach is easy to administer, and does not require more
resources than a “normal” DNS installation would require.

Approach 6: Development of a High Assurance DNS Daemon
Coverage of potential options would not be complete without considering the
development of a trusted DNS daemon from scratch. In this approach there would be a
single custom high assurance MLS daemon per DNS platform that manages a single
MLS DNS database. There are two options: 1) develop an MLS-aware DNS daemon
from scratch, but which depends on an underlying MLS Server to enforce the MAC
policy (i.e., a high assurance variation of the recommended MYSEA solution, described
in Section 3.1); or 2) develop a DNS daemon from scratch that runs as a trusted subject,

| Technical Report NPS-CS-09-004

 31

enforcing its own policy (i.e., a high assurance version of Approach 3: One DNS
Daemon, One DNS Database).

Approach 6 Disadvantages
Because of the size and complexity of the project, as explained in Section 1.4, it would be
a relatively costly effort to both design and implement a replacement DNS daemon that
supports MLS, in addition to the effort to do so in a high assurance manner.

If the underlying system does not provide MLS functionality, then the OS cannot separate
DNS data files based on the classification of the data. In such a situation the DNS
daemon should be the only process running on the server. This will protect the DNS data
files from other untrustworthy programs.

This approach requires the development of a trusted way to communicate the access class
of the DNS request to the DNS daemon, as described in Approach 2 Disadvantages.

Approach 6 Advantages
Developing a daemon using high assurance methods makes it possible to create software
that can be trusted to enforce an MLS DNS policy.

By starting from scratch, the configuration file syntax could also be redesigned to allow
for additional desired features, such as an access class designator. The existing DNS
configuration syntax has a reputation for being complex, so a potential advantage to this
approach would be DNS files that are easier to manage. Whether the existing
configuration syntax is complex for a purpose, or complex because of backward
compatibility, or a complex set of options, or whether its reputation for complexity is
undeserved, would affect the difficulty of a syntax re-design.

| Technical Report NPS-CS-09-004

32

Approach Comparison
Table 1 provides a quick comparison of the disadvantages of the approaches described in
this paper. The approach properties are not equally weighted. Therefore, a “score”
cannot be determined by just adding up the occurrences in each column. The legend for
the table is given below.

1 One COTS DNS Daemon Using DNS Views
2 One COTS DNS Daemon, Multiple Single-Level DNS Data Files
3 One DNS Daemon, One DNS Database
4 Many DNS Daemons on Many Physical Servers
5 Treat all IP Addresses as Unclassified Data
6 Development of a High Assurance DNS Daemon
M MYSEA Tested
G DoD GIG Vision

Table 1. Approach Disadvantages

Approach Properties 1 2 3 4 5 63 M G

DNS software modifications required √ √ √
Re-write of entire DNS application √ √
Trusted subject (enforcing policy) √ √ √ √ √ √
No run-time comparison of access classes √ √ √ √ √
Approach is low assurance √ √ √ √
MLS OS required for server √ √
Network access control required √ √ √
Requires development of software and
protocols outside of the DNS platform

√ √ √ √ √ √

One DNS server IP address per access
class

 √ √

“Network access control required” refers to the necessity of having a mechanism that
would prevent the spoofing of IP addresses for those approaches that rely on the source
or destination IP address of a network packet to make access control decisions.

“Requires development of software and protocols outside of the DNS platform” refers to
the need to develop software that is not directly tied to the modification or re-write of the
DNS daemon code base.

3 The properties of this approach are very dependent on the design choices made; this may not be a
complete list of properties associated with Approach 6.

| Technical Report NPS-CS-09-004

 33

Table 2 restates the seven requirements set forth in Section 2.3 and identifies the
approaches that meet each requirement. There are cases where the satisfaction of a
requirement by an approach is subjective.

Table 2. Approaches mapped to Requirements

Approach Requirements 1 2 3 4 5 6 M G
1. Clients shall be able to resolve an

address at any access class. √ √ √ √ √ √ √ √

2. Iterative DNS queries shall preserve
the access class of the initiating client. √ √ √ √ √ √ √ √

3. DNS data shall be protected from
observation and modification. √ √ √ √ √ √ √ √

4. Clients can do a read-down of DNS
data. √ √ √ √ √ √ √ √

5. Access to DNS data is based on access
class of 1) requester and 2) DNS data. √ √ √ √ √ √ √ √

6. Assurance shall be applied
appropriately. √ √ √ √ √

7. Scalable. √ √ √ √ √ √

Table 2 clearly shows that there are only three approaches that meet all the previously
stated requirements: Approaches 5, 6, and the approach described for the GIG. However,
the results of Table 2 must be balanced with the results of Table 1.

| Technical Report NPS-CS-09-004

34

THIS PAGE IS INTENTIONALLY BLANK

| Technical Report NPS-CS-09-004

 35

 Initial Distribution List

1. Dudley Knox Library, Code 013 2
Naval Postgraduate School
Monterey, CA 93943-5100

2. Research Office, Code 09 1

Naval Postgraduate School
Monterey, CA 93943-5138

3. Paul C. Clark 1

Code CS/Cp
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

4. Dr. Cynthia E. Irvine 2

Code CS/Ic
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

5. David J. Shifflett 1
Code CS
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

6. Ed Bryant 1
Unified Cross Domain Management Office
Hyattsville, MD 20783

7. Joseph DeHaven 1

Director, NSA F81
Fort Meade, MD 20655

8. Rob Dobry 1
National Security Agency
Fort Meade, MD 20655

9. Neil Kittleson 1

National Security Agency
Fort Meade, MD 20655

| Technical Report NPS-CS-09-004

36

10. Steve LaFountain 1
National Security Agency
Fort Meade, MD 20655

11. John Mildner 1

SPAWAR
Charleston, SC 29419

12. Dr. John Monastra 1

Aerospace Corporation
Chantilly, VA 20151

13. Louanna Notragiacomo 1

The MITRE Corporation
McLean, VA 22102

14. Dr. Ralph Wachter 1

Office of Naval Research
Arlington, VA 22203

	Cover.pdf
	DNS-090317.pdf

